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Feedback Control

Figure 1: Inverted pendulum system.

Figure 1 illustrates an inverted pendulum system, which consists of a cart
capable of moving along a horizontal axis and a pendulum attached to the
cart that swings freely. The dynamics of this system are inherently unstable,
as the pendulum tends to fall away from its upright position under the in-
fluence of gravity. To stabilize the system, a control mechanism must apply
appropriate forces to the cart, ensuring the pendulum remains balanced at
the upright position while minimizing the cart’s movement.

The system parameters are as follows: the mass of the cart M = 1kg, the
mass of the pendulum m = 0.3 kg, the moment of inertia of the pendulum
about its center of mass IG = 0.006 kg ·m2, the length of the pendulum
L = 0.4m, and the acceleration due to gravity g = 9.8m/s2. These known
values form the basis for deriving the equations of motion and designing the
control system. The primary challenge lies in stabilizing the pendulum at
its upright equilibrium position while simultaneously controlling the cart’s
position to prevent excessive displacement.
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1 System modeling
1.1 Equations of motion

Figure 2: Free body diagram.

Let (xP , yP ) = (x, 0). Then, (xG, yG) = (x − L sinϕ, L cosϕ), and the equa-
tions of motion for the system can be derived using the free body diagram
shown in Figure 2.

Horizontal force on the pendulum:

mẍG = H

mẍG = mẍ+mL sinϕ(ϕ̇)2 −mL cosϕϕ̈

≈ mẍ−mLϕ̈ (for small ϕ, ϕ̇)
H = mẍ−mLϕ̈ (1)
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Vertical force on the pendulum:

mÿG = V −mg

mÿG = −mL cosϕ(ϕ̇)2 −mL sinϕϕ̈

≈ −mLϕϕ̈ (for small ϕ, ϕ̇)
V = mg −mLϕϕ̈ (2)

Moment equation for the pendulum:

IGϕ̈ = T + V L sinϕ+HL cosϕ

≈ V Lϕ+HL (for small ϕ)
= (mgL−mL2ϕϕ̈)ϕ+mLẍ−mL2ϕ̈ (from (1), (2))
≈ mgLϕ+mLẍ−mL2ϕ̈ (for small ϕ)

0 = (IG +mL2)ϕ̈−mgLϕ−mLẍ

Horizontal force on the cart:

MẍP = f −H

Mẍ = f − (mẍ−mLϕ̈) (from (1))
0 = (M +m)ẍ−mLϕ̈− f

Equations of motion:

(M +m)ẍ−mLϕ̈− f = 0 (3)
(IG +mL2)ϕ̈−mgLϕ−mLẍ = 0 (4)

1.2 Transfer function
From (4):

mLs2X(s) = {(IG +mL2)s2 −mgL}Φ(s)
X(s)

Φ(s)
=

(IG/mL+ L)s2 − g

s2
(5)
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From (3), (5):

mLs2Φ(s) = (M +m)s2X(s)− F (s)

Φ(s)

F (s)
=

q

s2 − q(M +m)g
(6)

where q =
1

(M +m)IG/mL+ML
> 0

PD controller:

F (s)

Φd(s)− Φ(s)
= kP + kDs (7)

From (6), (7):

Φ(s)

Φd(s)− Φ(s)
=

q(kP + kDs)

s2 − q(M +m)g

∴ Φ(s)

Φd(s)
=

q(kP + kDs)

s2 + qkDs+ q{kP − (M +m)g}
(8)

2 Routh–Hurwitz stability criterion
To stabilize the inverted pendulum, we analyze the characteristic equation
of the system transfer function, Φ(s)

Φd(s)
, given by:

P (s) = s2 + qkDs+ q{kP − (M +m)g} = 0. (9)

For a second-order polynomial, the Routh–Hurwitz stability criterion states
that all roots will have negative real parts (stability) if and only if all coef-
ficients of the polynomial are positive. Applying this condition to P (s), we
obtain:

qkD > 0 and q{kP − (M +m)g} > 0.

Since q > 0, these reduce to:

kD > 0 and kP > (M +m)g.

Thus, for the inverted pendulum to remain stable, the proportional gain kP
must exceed the critical value (M + m)g, and the derivative gain kD must
be positive.
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3 Impulse response
The damping ratio ζ and natural frequency ωn of the system are defined by
the standard second-order characteristic equation:

P (s) = s2 + 2ζωns+ ω2
n.

From the system’s characteristic equation (9), we have:

2ζωn = qkD,

ω2
n = q{kP − (M +m)g}.

Thus, the damping ratio can be expressed as:

ζ =
1

2
kD

√
q

kP − (M +m)g
.

Given the desired damping ratio ζ ≈ 1
2
,

kD =

√
kP − (M +m)g

q
. (10)

Here, we choose kP as the primary tuning parameter, and kD is computed
by (10) to satisfy the desired damping ratio. Once the gains are selected, the
impulse response of the system can be analyzed to validate the design.

1 M = 1; m = 0.3; I_G = 0.006; L = 0.4; g = 9.8;
2 q = 1/((M+m)*I_G/(m*L)+M*L);
3 t = 0:0.01:10;
4

5 k_P = 25; % k_P > (M+m)*g, tune this!
6 k_D = sqrt((k_P-(M+m)*g)/q); % k_D > 0, damping ratio = 0.5
7

8 numerator = [q*k_D, q*k_P];
9 denominator = [1, q*k_D, q*(k_P-(M+m)*g)];

10 feedback_control_system = tf(numerator , denominator);
11

12 y = impulse(feedback_control_system , t);

Listing 1: Impulse response in MATLAB.

Listing 1 provides the MATLAB code used to compute the impulse response,
and the animation for varying kP is provided in [link]. Figure 3 shows the
impulse responses for the system with kP = 20, kP = 25, and kP = 30.
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Figure 3: Impulse response for kP = 20, 25, and 30.

The response for kP = 20 exhibits a relatively long settling time, indicating
low responsiveness and slow convergence to the equilibrium position. For
kP = 30, the system response shows relatively high overshoot before stabiliz-
ing. In contrast, the response for kP = 25 achieves a balance between settling
time and overshoot. Based on this analysis, we chose (kP , kD) = (25, 2.39).
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4 Time Response Analysis
4.1 Simulink Implementation
In this section, we analyze the time response of the system under the initial
condition ϕ(0) = −10◦. The system is implemented in Simulink based on the
transfer functions derived in previous sections.

Figure 4: PD Controller.

Figure 4 represents the PD controller implemented in Simulink. Unlike the
theoretical expression in equation (7), where the PD controller is KP +KDs,
here it is implemented as KP + KDs

τDs+1
. For practical reasons, a pole with a

short time constant τD is added to the PD controller. The pole helps limit
the loop gain at high frequencies, which is desirable for disturbance rejection.

Figure 5: Plant Φ.

Figure 5 shows the plant for Φ(s), derived in equation (6). This block repre-
sents the plant dynamics of the pendulum’s angular displacement.
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Figure 6: Plant X.

Figure 6 shows the plant for X(s), derived in equation (5). This block models
the dynamics of the cart’s displacement.

Figure 7: Overall system.

Finally, Figure 7 combines the individual components to represent the entire
control system implemented in Simulink.
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4.2 Time Response: ϕ(t)
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Figure 8: Time response of ϕ(t) for kP = 25, 200, and 1000.

Figure 8 shows the time response of ϕ(t) for different values of kP : 25, 200,
and 1000. The observed trends are consistent with the previous impulse
response analysis (Figure 3). As kP (and consequently kD) increases, the
response becomes faster but exhibits increased overshoot. For kP = 25, the
response is relatively slow but exhibits no significant overshoot. On the other
hand, kP = 200 and kP = 1000 show faster responses but larger overshoots,
with kP = 1000 displaying the highest overshoot.
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4.3 Time Response: x(t)
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Figure 9: Time response of x(t) for kP = 25, 200, and 1000.

Figure 9 illustrates the time response of x(t) for the same setup. For kP = 25,
the cart exhibits the worst performance, with an initial peak displacement of
approximately 0.17m and a steady-state displacement exceeding 0.14m. For
kP = 200 and kP = 1000, the steady-state displacement converges to around
0.08m, with kP = 200 being slightly higher. However, the initial peak is
about 0.11m for kP = 200, while it rises to 0.12m for kP = 1000.

This analysis suggests that increasing kP provides diminishing benefits
in terms of steady-state displacement while increasing the initial overshoot.
Based on these results, kP = 200 represents a balanced choice that minimizes
cart movement while ensuring acceptable pendulum stabilization.

Animations of the inverted pendulum time responses are available for
[kP = 25], [kP = 200], and [kP = 1000].

To minimize cart movement, one approach would be to introduce a posi-
tion feedback term in the controller design. Alternatively, tuning kP to avoid
excessive overshoot, as observed for kP = 1000, is critical for achieving both
pendulum stabilization and limited cart displacement.
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